You are here
Strategic priorities of agricultural development based on the Agricultural 5.0 and Agricultural 6.0 concepts
The evolution of technological achievements in agriculture has been summarized based on their development from traditional systems to the concepts of “Agricultural 5.0” and “Agricultural 6.0”, innovative products of their implementation are highlighted. The concept of “Agriculture 4.0” and its main tools are highlighted: sensor technologies, high-speed mobile communications, big data analytics, sensor technologies, artificial intelligence, robotics. It is emphasized that digital agriculture includes digital and geospatial technologies for monitoring, assessing and managing soil, climate and genetic resources, and the digital data generated by them is a type of business resource. It is argued that digital technologies have combined all technological processes of agri-food production and goods movement into an integrated value chain, which has changed the implementation of business processes. The positive and negative impacts of digitalization on the resulting indicators of agricultural development are summarized. It is substantiated that the concept of «Agricultural 5.0» is a new approach to the development of agriculture, the main technological solutions of which are the robotics use, technologies of «augmented or augmented reality», 6G technologies, AI, big data, biotechnology, microrobots, biological robotic systems. The impact of this model on increasing the efficiency of production activities, implementing the principles of sustainable development, improving technological processes, minimizing losses in technological processes, food waste at the consumption stage, as well as the introduction of methods for controlling emissions of harmful substances is systematized. The promising concept of «Agricultural 6.0» of integrative agriculture and its main elements are characterized: regenerative farming systems, circular economy, biorevolution, biofuels and bioenergy, carbon credits, etc. It is proven that this model contributes to achieving the sustainability of agricultural production and increasing human well-being based on the rational and sustainable use of natural resources. It is emphasized that domestic agricultural production is at the stage of transition to a digital agriculture model, which involves changes in practices and methods of implementing technological operations at the level of all participants in the agri-food supply chain. It is substantiated that the strategic development of Ukrainian agriculture should be oriented towards the implementation of modern innovative models, which requires the development of appropriate strategic programs with an effective set of organizational and economic tools and measures to achieve innovative and sustainable development of the industry.
Key words: smart agriculture, digital agriculture, precision agriculture, digital technologies, sustainable development, renewable technologies, bioeconomy, circular economy.
REFERENCES
1. Grishchuk, A. M. (2020). Neobkhidnist zminy tekhnolohichnoho ukladu na osnovi draiveriv ekonomichnoho zrostannia [The need to change the technological structure based on the drivers of economic growth]. Vcheni zapysky TNU imeni V. I. Vernadskoho. Seriia: Ekonomika i upravlinnia [Scientific notes of the V. I. Vernadsky TNU. Series: Economics and Management]. No. 2. Vol. 31 (70). DOI: https://doi. org/10.32838/2523-4803/70-2-14
2. World Bank. Agriculture and Food. Oct 09, 2024. Available at: https://www.worldbank.org/en/ topic/agriculture/overview#1
3. Fatimah, S., Razak, A., Sumendra Y., Sayeed M. S., Derafi M., Muhammad, I. F. (2024). Emerging Science Journal. Vol. 8. No. 2. Pр. 744-760. DOI: http://dx.doi.org/10.28991/ESJ-2024-08-02-024
4. Fraser, E., Campbell, M. (2019). Agriculture 5.0: Reconciling Production with Planetary Health. One Earth, Vol. 1(3). Pp. 278-280. DOI: http://doi. org/10.1016/j.oneear.2019.10.022
5. Saiz-Rubio, V., Rovira-Más, F. (2020). From smart farming towards agriculture 5.0: A review on crop data management. Agronomy. Vol. 10(2). Pp. 207. DOI: http://doi.org/10.3390/agronomy10020207
6. Mesías-Ruiz, G. A., Pérez-Ortiz, M., Dorado, J., de Castro, A. I., Peña, J. M. (2023). Boosting precision crop protection towards agriculture 5.0 via machine learning and emerging technologies: A contextual review. Frontiers in Plant Science. Vol. 14. DOI: http://doi.org/10.3389/fpls.2023.1143326
7. Harvesting change: Harnessing emerging technologies and innovations for agrifood system transformation Global foresight synthesis report. Available at: https://openknowledge.fao.org/server/ api/core/bitstreams/03d82fe7-49e5-4077-8aa6-2d0f3c1893b4/content
8. Shruti, Ag., Verma, А. (2022). Transformations in The Ways of Improving from Agriculture 1.0 to 4.0. 5th International Conference on Contemporary Computing and Informatics. DOI:10.1109/ IC3I56241.2022.10072298
9. Zanoni, M. (2024). A questão ambiental e o rural contemporâneo Desenvolvimento e Meio Ambiente. №10. Рp. 101-110. DOI: https://doi.org/10.5380/ dma.v10i0.3098
10. Creutzberg, G.M. (2015). Agriculture 3.0: A New Paradigm for Agriculture. DOI:10.13140/ RG.2.1.4218.5205
11. Ateş, M.G., Şahin, Y. (2021). Evaluation of Industry 4.0 Applications for Agriculture using AHP Methodology. Kocaeli Journal of Science and Engineering. Vol. 4. Pp. 39-45. Available at: https://doi. org/10.34088/kojose.768344
12. Basso, B., Antle, J. (2020). Digital agriculture to design sustainable agricultural systems. Nature Sustainability. Vol. 3. Pp. 254-256. DOI: https://doi. org/10.1038/s41893-020-0510-0 ozvytku ahroprodovolchykh system v umovakh povoiennoho vidnovlennia Ukrainy [Conceptual principles of the development of agro-food systems in the conditions of post-war reconstruction of Ukraine]. Ekonomika ta upravlinnia [Economics and management of the agricultural complex]. No. 1. P. 28–42. DOI: https:// doi.org/10.33245/2310-9262-2024-189-1-28-42
14. Ibatullin, I. I., Varchenko, O. O., Artymonova, I. V., Verniuk, N. O. (2021). Stratehichni priorytety rozvytku ahroprodovolchoho sektoru ekonomiky Ukrainy [Strategic priorities for the development of the agro-food sector of the economy of Ukraine]. Ekonomika ta upravlinnia APK [Economics and management of the agricultural complex]. 2021. No. 2. P. 76-86. Available at: https://doi.org/10.33245/2310- 9262-2021-169-2-76-86
15. Verdouw, C., Tekinerdogan, B., Beulens, A., Wolfert, S. (2021). Digital twins in smart farming. Agricultural Systems. 2021. Vol. 189. DOI: https://doi.org/10.1016/j.agsy.2020.103046
16. Walter, A., Finger, R., Huber, R., Buchmann, N. (2017). Opinion: Smart farming is key to developing sustainable agriculture. Proceedings of the National Academy of Sciences of the United States of America. Vol.114. Pp. 6148-6150. DOI: https://doi. org/10.1073/pnas.1707462114
17. Rotz, S., Gravely, E., Mosby, I., Duncan, E., Finnis, E., Horgan, M., LeBlanc, J., Martin, R., Neufeld, H.T., Nixon, A., Pant, L., Shalla, V., Fraser, E. (2019). Automated pastures and the digital divide: how agricultural technologies are shaping labour and rural communities. Journal of Rural Studies. Vol. 68. Pp. 112-122. DOI: https://doi.org/10.1016/j.jrurstud.2019.01.023
18. Giugliano, G., Laudante, E., Formati, F., Buono, M. (2023). Approaches and Technologies for the Human-Centered Industry 5.0. Proyecta an Industrial Design Journal. 2023. DOI:10.25267/P56-IDJ.2023.i3.05
19. Pasko, N., Viunenko, O. (2023). Modeling human-machine interaction in information processing and management systems. European Science. Vol. 2(sge17-02). Pp. 6-52. Available at: https://doi. org/10.30890/2709-2313.2023-17-02-027
20. Symeonaki, E., Maraveas, C., Arvanitis, K.G. (2024). Recent Advances in Digital Twins for Agriculture 5.0: Applications and Open Issues in Livestock Production Systems. Appl. Sci. Vol. 14. Available at: https://doi.org/10.3390/app14020686
21. Tan Y., Zheng Z.-Y. (2013). Research Advancein Swarm Robotics. Def. Technol. Vol. 9. Pp. 18-39. Available at: https://doi.org/10.1016/j.dt.2013.03.001
22. Kootstra, G., Wang, X., Blok, P.M., Hemming, J., Van, Henten, E. (2021). Selective Harvesting Robotics: Current Research, Trends, and Future Directions. Curr. Robot. Rep. Vol. 2. Pp. 95-104. Available at: https://doi.org/10.1007/s43154-020-00034-1
23. Jones, D., Snider, C., Nassehi, A., Yon, J. Hicks, B. (2020). Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. Vol. 29. Pp. 36-52. Available at: https://doi. org/10.1016/j.cirpj.2020.02.002
24. Verdouw, C. N., Kruize, J. W. (2017). Digital twins in farm management: Illustrations from the FIWARE accelerators SmartAgriFood and Fractals. In Proceedings of the 7th Asian-Australasian Conference on Precision Agriculture, Hamilton, New Zealand, 16-18 October Available at: https://www. researchgate.net/publication/322886729
25. Salameh, A. I., El Tarhuni, M. (2022). From 5G to 6G-Challenges, Technologies, and Applications. Future Internet. Vol. 14. 117. Available at: https://doi. org/10.3390/fi14040117
26. Giller, K. E., Hijbeek, R., Andersson, J. A., Sumberg, J. (2021). Regenerative agriculture: an agronomic perspective. Outlook on agriculture. Vol. 50(1). Pp. 13-25. Available at: https://doi. org/10.1177/00307270219980
27. Bilousko, T. (2024). Tsyrkuliarna ekonomika v konteksti dosiahnennia tsilei staloho rozvytku [Circular economy in the context of achieving sustainable development goals]. Ekonomika ta suspilstvo [Economy and society]. Issue (65). Available at: https://doi. org/10.32782/2524-0072/2024-65-52
28. Analysis and prospects for the development of agriculture in Ukraine 2025. Available at: https:// mukachevo.net/news/analiz-i-perspektyvy-rozvytku-silskohospodarstva-ukrayiny-2025_6270676.html
29. Ukraine has developed an agrotech development strategy. Available at: https://www.agronom. com.ua/v-ukrayini-rozrobyly-strategiyu-rozvytkuagrotech-shho-tse-take/
Attachment | Size |
---|---|
![]() | 486.53 KB |