You are here
Big Data – a new information phenomenon of digital epoch
The essence of concepts «data», «information», «knowledge» is investigated in the article from positions of DIKW (Information Hierarchy) of American organizational theorist Russell Ackoff. DIKW belongs to a class of models for representing relationships between data, information, knowledge and wisdom. In this model information is defined in terms of data, knowledge in terms of information, and wisdom in terms of knowledge.
Also concepts «data», «information», «knowledge» are described according to ISO/IEC 2382:2015 «Information technology – Vocabulary».
Data is the representation of information in a formalized manner suitable for communication, interpretation or processing. Information (in information processing) is any fact, concept or meaning derived from data and associated context, or selected from knowledge. Knowledge can be described as organized, integrated collection of facts and generalization.
It is important for our research to divide information obtained from data on analog and digital. The first is obtained through the use of natural methods of data processing and is perceived exclusively by human. It has a continuous character and is divided according to the five human senses to visual, auditory, tactile, olfactory and gustatory. Digital information is discrete and is perceived by computers.
Development of technical facilities gave new possibilities for recording, processing, storage and analysis of increasingly larger and more varied in nature and structure data sets. On the other hand, the evolution of technology increased data production.
Big Data appeared due to development of computer technologies. During the last years Big Data has attracted attention of more and more researchers. Year by year, data collected from different spheres of activity is getting larger and more complicated.
Big data refers to datasets whose size is beyond the ability of typical database software tools to capture, store, manage and analyze. That’s why some investigators called Big Data as “inconveniently large data”.
Oxford dictionary defines Big Data as extremely large data sets that may be analyzed computationally to reveal patterns, trends and associations, especially relating to human behavior and interactions.
Big data is a term used to describe a large volume of both structured and unstructured data. But a huge volume is not the only one feature of Big Data.
The other features are:
velocity (data in motion) – data streams with an unprecedented speed and must be processed in time. Speed as a characteristic of Big Data means that data is collected rapidly and requires response as soon as possible as processing data streams in real time;
variety (data in many forms) – data comes in all types of formats – from structured, numeric data in traditional databases to unstructured text documents, email, video, audio, stock ticker data and financial transactions. Such unstructured data is often created by Internet users. In addition, companies collect data from a wide range of sources, including different financial and business transactions, social media and information from sensor or machine-to-machine data.
SAS, one of the leading producers of software for statistical analysis, nominates two additional features of Big Data:
variability – data flows can be highly inconsistent with periodic peaks (daily, seasonal etc.);
complexity – data comes from multiple sources, which makes it difficult to link, match, cleanse and transform data across systems.
Unstructured arrays of data reflect the actual processes in the Internet information environment and could be used for obtaining information through Data mining. Data mining is the process that attempts to discover useful information
(or patterns) in large data repositories. Data mining enables to analyze data regardless of source, type, size, or format.
A scope of Big Data using is extremely broad now and it will grow in future. Today it is a business priority, because the effective use of data is becoming the basis of competition. Big Data can improve the profitability, business value and provide a success of many enterprises. So, Big Data will fundamentally change the way businesses compete and operate.
It should be noted that the huge importance of Big Data is predefined not by data itself or by its size, but by results of processing and analysis that allow to provide new knowledge. Thus one of the most popular professions of the near future will be a specialist in Data Science, who has three groups of competencies: IT literacy, mathematical and statistical knowledge and awareness in practical application of the previous groups of skills, who understands business needs of his organization or tasks of relevant science area.
Key words: data, information, knowledge, DIKW, Big Data, Data Mining, unstructured information.
Text Mining, OLAP / A. A. Barsegjan, M. S. Kuprijanov, V. V. Stepanenko, I. I. Holod. – 2-e izd., pererab. i dop. – SPb.: BHV-Peterburg, 2007. – 384 s.
-
1. Sholle D. What is Information? The Flow of Bits and the Control of Chaos / D. Sholle // Democracy and new media. – Cambridge, Mass.: MIT Press. – 2003. – p. 343–364. [Elektronnyj resurs]. – Rezhim dostupu: http://web.mit.edu/comm-forum/papers/sholle.html.
2. Ackoff R. L. From Data to Wisdom / R. L. Ackoff // Journal of Applies Systems Analysis. – Vol. 16. – 1989. – p. 3–9.
3. DIKW [Elektronnyj resurs] // Vikipediia: vil'na entsykl. – Elektron. dani. – Rezhym dostupu: https://ru.wikipedia.org/ wiki/DIKW. – Nazva z ekrana. – Data perehliadu: 05.09.2016.
4. Velykyj tlumachnyj slovnyk suchasnoi ukrains'koi movy (z dod. i dopov.) / Uklad. i holov. red. V. T. Busel. – K., Irpin': VTF «Perun», 2005. – 1728 s.
5. Ivanov V. H. Osnovy informatyky ta obchysliuval'noi tekhniky: pidruch. / V. H. Ivanov, V. V. Karasiuk,
M. V. Hvozdenko; za zah. red. V. H. Ivanova. – Kh.: Pravo, 2015. – 312 s.6. Kovtun N. V. Teoriia statystyky: pidruch. / N. V. Kovtun. – K.: Znannia, 2012. – 399 s.
7. ISO/IEC 2382:2015 «Information technology – Vocabulary» [Elektronnyj resurs]. – Rezhim dostupu: https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:ed-1:v1:en.
8. Zakon Ukrainy «Pro derzhavnu statystyku» // Vidomosti Verkhovnoi Rady Ukrainy (VVR), 1992, № 43, st. 608. [Elektronnyj resurs] – Rezhym dostupu: http://zakon5.rada.gov.ua/laws/show/2614-12.
9. Donec L. I. Upravlenie znanijami v kontekste innovacionnogo razvitija predprijatija / L. I. Donec // Teoretychni i praktychni aspekty ekonomiky ta intelektual'noi vlasnosti. – 2012. – Vyp. 1. – T. 1. – S. 292-296.
10. Information [Elektronnij resurs] // Stanford Encyclopedia of Philosophy. – Elektron. danі. – Rezhim dostupu: http://plato.stanford.edu/entries/information. – Nazva z ekrana. – Data peregljadu: 05.09.2016.
11. Wiener N. Cybernetics: Or the Control and Communication in the Animal and the Machine. 2nd ed. / N. Wiener. – Cambridge, MA: MIT Press. – 1965. – 212 p.
12. Viner N. Kibernetika i obshhestvo / N. Vinner. – M.: Izdatel'stvo inostrannoj literatury, 1958. – 199 s.
13. Informacija [Elektronnij resurs] // Jenciklopedija fiziki i tehniki. – Elektron. danі. – Rezhim dostupu: http://femto. com.ua/articles/part_1/1406.html. – Nazva z ekrana. – Data peregljadu: 05.09.2016.
14. Big Data [Elektronnij resurs] // Google Trends. – Elektron. danі. – Rezhim dostupu: https://www.google. com.ua/trends/explore?date=all&q=big%20data. – Nazva z ekrana. – Data peregljadu: 05.09.2016.
15. Big Data [Elektronnij resurs] // Oxford dictionaries. – Elektron. danі. – Rezhim dostupu: http://www.oxford-dictionaries.com/definition/english/big-data. – Nazva z ekrana. – Data peregljadu: 05.09.2016.
16. Laney D. 3D Data Management: Controlling Data Volume, Velocity and Variety [Elektronnij resurs]. – Rezhim dostupu: https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Managem... and-Variety.pdf.
17. Majer-Shenberger V. Bol'shie dannye. Revoljucija, kotoraja izmenit to, kak my zhivem, rabotaem i myslim / Viktor Majer-Shenberger, Kennet Kuk'er. – M.: Mann, Ivanov i Ferber, 2014. – 240 s.
18. Alekseev M. Big Data-revoljucija v oblasti hranenija i obrabotki dannyh. [Elektronnij resurs]. – Rezhim dostupu: http://www.slideshare.net/mikhailalekseev71/big-data-40258380?qid=0b8674... &from_search=6.
19. «Tret'ja volna»: mnogocentrovoe issledovanie po analitike Big Data Akademicheskogo partnerstva EMS v Rossii i SNG / O.Ju. Kolesnichenko, G.N. Smorodin, I.V. Il'in i dr. // Monitoring obshhestvennogo mnenija: jekonomicheskie i social'nye peremeny. – 2015. – № 5. – S. 21–41.
20. Tehnologii analiza dannyh: Data Mining, Visual Mining, Text Mining, OLAP / A. A. Barsegjan, M. S. Kuprijanov, V. V. Stepanenko, I. I. Holod. – 2-e izd., pererab. i dop. – SPb.: BHV-Peterburg, 2007. – 384 s.
Attachment | Size |
---|---|
zadorozhna_1-2_2016.pdf | 386.21 KB |